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Abstract 12 

A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled 13 

with a newly developed hierarchical dominant river tracing-based runoff-routing model to form 14 

the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which 15 

serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS 16 

uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-17 

band 50°N-50°S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples 18 

of model results for recent flood events are computed using the real-time GFMS 19 

(http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run 20 

retrospectively for 15 years using both research-quality and real-time satellite precipitation 21 

products. Evaluation results are slightly better for the research-quality input and significantly 22 

better for longer duration events (three-day events vs. one-day events). Basins with fewer dams 23 

tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, 24 

the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical 25 

results are better than those of the previous system. Streamflow was evaluated at 1,121 river 26 

gauges across the quasi-global domain. Validation using real-time precipitation across the tropics 27 

(30ºS–30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations 28 

with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There 29 

were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation 30 

input.  31 
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1. Introduction 35 

 36 

Floods are a leading natural disaster with worldwide, significant, negative social-economic 37 

impacts. According to World Disaster Report [2012], floods and associated landslides caused 38 

more than 55% (2,000) of a total of 3,600 significant natural disasters during 2002-2011 over the 39 

globe; they killed over 65,000 people, affected over 1.1 billion people and cost an estimated 40 

$280 billion (US Dollars in 2011). Most of these disasters occurred in densely populated and 41 

under-developed areas where an effective flood monitoring and forecasting system is lacking due 42 

to insufficient resources [Wu et al., 2012a]. A reliable flood monitoring and forecasting system at 43 

a global scale is extremely desirable to a variety of national and international agencies for 44 

humanitarian response, hazard mitigation and management. Satellite remote sensing has opened 45 

a new era to pursue global flood estimation (particularly important for remote and trans-46 

boundary areas) by providing: (1) flood extent mapping via direct observations using optical 47 

[e.g., Brakenridge, 2006; Ordoyne and Friedl, 2008] or Synthetic Aperture Radar imagery [e.g. 48 

Horritt et al., 2003; Mason et al., 2012]; and (2) flood monitoring and forecasting through the 49 

use of hydrologic models and observational inputs for precipitation, land cover, vegetation, 50 

topography, and hydrography etc. [e.g. Shrestha et al., 2008; Wu et al., 2012a, Alfieri et al., 51 

2013], which is the subject of this paper. 52 

Rainfall estimation is the most critical meteorological input of a hydrologic model for real-53 

time flood estimation, and can be obtained through satellite remote sensing with reliable 54 

availability at relatively high spatial-temporal resolution and short lag time (hours). One such 55 

satellite-based precipitation product, the National Aeronautics and Space Administration (NASA) 56 

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis [TMPA; 57 

Huffman et al., 2007], has been successfully applied in many hydrologic modelling applications 58 

[e.g., Harris et al., 2007; Su et al., 2008 and 2011]. The TMPA precipitation products are 59 

composed of multiple satellite estimates calibrated, or adjusted, to the information from the 60 

TRMM satellite itself, which carries both a radar and passive microwave sensor. An 61 

experimental Global Food Monitoring System (GFMS) using the real-time version of the TMPA 62 

precipitation information (3-hourly, with ~6 hour lag, 0.25º latitude–longitude resolution) for 63 

quasi-global (50ºS–50ºN) coverage was developed and improved [Hong et al., 2007; Yilmaz et 64 

al., 2010; Wang et al., 2011; Wu et al., 2012a] and has been running routinely for the last few 65 

years providing useful results for a number of organizations. Currently, this real-time flood 66 
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estimation system is often the only source of quantitative information during significant flood 67 

events, when information is needed for relief efforts by humanitarian agencies, such as United 68 

Nations Office for the Coordination of Humanitarian Affairs (OCHA) and United Nations World 69 

Food Programme (WFP).  70 

Evaluations of various hydrologic model-based flood estimation calculations using satellite 71 

precipitation data have been conducted with positive performances at local and regional scales 72 

(e.g., Shrestha et al., 2008; Pan et al., 2010; Su et al., 2008 and 2011). On a larger, global scale, 73 

Wu et al. [2012a] evaluated the previous version of the GFMS, which was based on a grid-based 74 

hydrologic model [Wang et al., 2011], driven by TMPA 3B42V6 research (non-real-time) 75 

rainfall product. They examined the performance in flood event detection against available flood 76 

inventories, showing that the GFMS flood detection performance improves with longer flood 77 

durations and larger affected areas. The presence of dams tended to result in more false alarms 78 

and longer false alarm duration. The statistics for this previous system for flood durations greater 79 

than three days and for areas without dams were around a Probability of Detection (POD) of ~ 80 

0.70 and a False Alarm Ratio (FAR) of ~ 0.65 [Wu et al., 2012]. 81 

These evaluations of our previous systems [Yilmaz et al., 2010; Wu et al., 2012a] indicated 82 

pathways toward an improved approach with greater flexibility and accuracy. The key areas for 83 

potential improvement included consideration of sub-grid hydrologic processes, inclusion of cold 84 

season processes and improved routing that could lead to two-way interaction between the land-85 

surface processes and the routing calculations. A Land Surface Model (LSM) can be used to 86 

effectively calculate land surface and subsurface runoff through its vertical water-energy 87 

processes, partitioning precipitation into infiltration, evapotranspiration and runoff components. 88 

However, a lateral process for runoff-routing is usually lacking within most LSMs, though an 89 

efficient and accurate runoff-routing scheme can have significant impacts on delineation of river 90 

basin water and energy budgets [Decharme et al., 2011], and be critically important for flood 91 

simulation. For LSMs such as the Variable Infiltration Capacity (VIC) model (Liang et al., 1994 92 

and 1996), the traditional cell-to-cell or source-sink routing models based on widely used Unit 93 

Hydrograph methods, e.g. Lohmann et al. [1996] and Wu et al. [2012c] can be used to 94 

successfully simulate streamflow by post-processing the LSM runoff output. However, it is 95 

difficult (if even possible) to couple this type of routing model with an LSM (with feedbacks to 96 

the LSM online) for global-scale real-time flood calculation. This is because the convolution 97 
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algorithms have to incorporate all upstream runoff information for multiple previous time steps 98 

to determine the streamflow for a specific downstream grid cell at a time step. For this study, we 99 

developed a new hydrologic module for the GFMS by coupling the widely used VIC land 100 

surface model with a recently developed physically-based hierarchical Dominant River Tracing 101 

[Wu et al., 2011 and 2012b] based runoff-Routing (DRTR) model. This new coupled system, the 102 

Dominant river-tracing Routing Integrated with VIC Environment (DRIVE) model, is intended 103 

to provide improved global results and increased flexibility for implementation of future 104 

improvements.  105 

In this paper we describe this new DRIVE-based version of the GFMS and evaluate the 106 

performance of the system on a global basis against stream flow observations and flood event 107 

archives, using satellite precipitation information from both the real-time and research products. 108 

Section 2 of this paper describes the methodology, particularly on the DRIVE coupled model 109 

system; Section 3 outlines the model data inputs and parameterization; Section 4 focuses on the 110 

model evaluation; and conclusions and future work are presented in Section 5.  111 

 112 

2. Methodology 113 

 114 

The new real-time GFMS (http://flood.umd.edu) combines the satellite-based precipitation 115 

estimation, runoff generation, runoff routing, and flood identification using the DRIVE coupled 116 

model system described in detail in Sections 2.1 and 2.2. 117 

2.1 Variable Infiltration Capacity (VIC) model 118 

Hydrologically oriented LSMs, such as the VIC model, solve for full water and energy 119 

balances with good skill for water budget estimation [Peters-Lidard et al., 2011]. We selected 120 

the VIC model as a critical part of our GFMS for two additional reasons. First, significant 121 

community development has been carried out, and continued improvement will be maximized by 122 

being part of this larger community of land surface model development and testing. The VIC 123 

model has been successfully applied for many hydrologic simulations and water resource 124 

manangement studies, including flooding [e.g. Hamlet and Lettenmaier, 2007 and 2010; Elsner 125 

et al., 2010; Voisin et al., 2011]. Through these studies the VIC model has been generally well 126 

parameterized across the globe and thus provides a good starting point for global applications 127 

such as this study. Second, the VIC model includes a module for snow and soil frost dynamics 128 

[Storck et al., 2002; Cherkauer and Lettenmaier, 2003], with good validation against streamflow 129 

http://flood.umd.edu/
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observations in many snowmelt-dominated basins, particularly in mountainous areas 130 

[Christensen  et  al., 2004; Hamlet  et  al., 2005; Elsner et al., 2010; Wu et al., 2012c]. This will 131 

benefit the GFMS in forecasting spring streamflow and snowmelt-related floods and allow us to 132 

estimate floods in a large part of the globe with snowmelt-dominant basins.  133 

Representation of complex physical processes at a spatial resolution commensurate with 134 

LSMs through sub-grid process is a good strategy to balance data availability, heavy computing 135 

loads, and model accuracy. Inclusion of sub-grid processes is a major feature of the VIC model 136 

contributing to its good performance in runoff generation calculations. The VIC model considers 137 

the sub-grid heterogeneity of infiltration capacity through statistical variable infiltration curves 138 

[Zhao and Liu, 1995], which have been demonstrated to work very well for large-scale 139 

applications [Sivapalan and Woods, 1995]. The VIC model also considers sub-grid 140 

parameterization and processes on fractional sub-grid areas for different land cover types and 141 

elevation bands. To use the VIC model for real-time runoff prediction, we made a significant 142 

effort to modify the VIC model from its original individual grid-cell–based mode to a mode that 143 

is able to simulate spatially distributed runoff at each time step, i.e., computing all the grid boxes 144 

at each time step. The modification was performed on the version of the VIC model (v4.1.1) in 145 

an efficient way without changing model physics, so that we can conveniently update our 146 

modified VIC model periodically using the updates from the VIC model community.    147 

 148 

2.2 Dominant River Tracing-based runoff-Routing (DRTR) model and coupling with VIC 149 

model 150 

For clarity, the term “runoff” hereafter stands for the excess water generated in each grid cell 151 

for routing with units of depth [mm], while “streamflow” and “discharge” are used 152 

interchangeably to indicate the routed flows in the channel/floodplain network with units of 153 

[m
3
/s]. The function of a routing model is to transport water (runoff) downstream in a river basin 154 

system until the river empties into the ocean or a lake. A routing model consists of two main 155 

components: (1) the description of the river basin drainage system, i.e. simplifying the basin 156 

drainage system into a parameterized concept and (2) the physical and numerical models for 157 

computer simulation of stream flow and other variables with appropriate assumptions 158 

commensurate with the simplifications in the drainage basin concept. Recently developed and 159 

relatively advanced physically based routing schemes for large-scale applications [e.g. Decharme 160 
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et al., 2011; Yamazaki et al., 2011; Li et al., 2013] usually deploy similar governing equations 161 

taken from various forms of the classic St-Venant equations based on mass and momentum 162 

conservation, often using the kinematic wave and diffusion wave methods. The essential 163 

differences among routing models of this type lie in the levels at which a drainage system is 164 

abstracted and simplified, and the techniques used for parameterizing each element within the 165 

model conception. 166 

 In this study we implemented a physically based routing model based on the hierarchical 167 

DRT method [Wu et al., 2011 and 2012b], which includes a package of hydrographic upscaling 168 

(from fine spatial resolution to coarse resolution) algorithms and resulting global datasets (flow 169 

direction, river network, drainage area, flow distance, slope, etc.) especially designed for large-170 

scale hydrologic modelling. This DRT-based runoff-Routing (DRTR) model is grid based and 171 

convenient for coupling with the modified gridded VIC model to simulate spatially distributed 172 

streamflow. 173 

2.2.1 The DRTR model concept  and parameterization 174 

Recently developed grid-based, large-scale (coarser resolution) routing models usually 175 

conceptualize a drainage system as connected stem rivers at grid resolution, but with major 176 

differences in subgrid process (routing) delineation. Given the generally well established 177 

mathematics and physics for land surface routing simulation, the major challenge to 178 

implementing a large-scale routing scheme lies in obtaining accurate parameterization of the 179 

model elements (particularly at sub-grid scale). For example, a recent large-scale routing model 180 

on a grid basis [Li et al., 2013], deploying a kinematic wave type routing method, conceptualized 181 

the routing process by using a hypothetical sub-grid channel to link hillslopes and stem rivers 182 

which has a transport capacity equivalent to all tributaries combined, while linking the grids via 183 

the stem river network derived by the DRT upscaling algorithm by Wu et al. [2011 and 2012b]. 184 

Due to the scale-consistent stem river network derived by the DRT algorithm and the scale-185 

consistent sub-grid routing parameterization, this large-scale routing model showed a consistent 186 

model performance across different spatial resolutions [Li et al., 2013]. 187 

In this study, we implemented the DRTR routing model using a drainage system concept 188 

similar to Li et al. [2013], but with differences in sub-grid parameterization using the full 189 

strength of the DRT algorithms to allow more-detailed high resolution subgrid information that 190 

is aggregated for coarser resolution routing simulation and for numeric solutions of the 191 
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governing equations. Under the gridded DRT framework, the hydrologic system of each river 192 

basin is conceptualized as a hierarchically-connected hillslope-river-lake or -ocean system. All 193 

grid cells are connected via the predominant river (or flow path) running through the grid cell, 194 

which forms the major drainage network for the river basin (red lines in Fig. 1a). For coarser 195 

spatial resolution (e.g. coarser than 1 km) hydrologic modelling, the DRT derives the 196 

predominant river (red lines) from the fine-resolution river network (blue lines; Wu et al., 2011). 197 

Fig. 1b shows a typical real drainage system within an individual grid cell, represented by high-198 

resolution river network data, with one predominant river (dark blue) collecting runoff from 199 

tributaries (light blue) and overland areas (blank), which is conceptualized as in Fig. 1c with 200 

simplified subgrid tributaries (light blue lines). At the subgrid scale, the predominant river within 201 

each grid cell is divided into one or multiple river intervals (purple ticks in Fig. 1c and d). Each 202 

dominant river interval can have one “effective tributary” (light blue lines in Fig.1c and d) 203 

collecting runoff from its overland contributing area even if there are multiple tributaries 204 

(defined from high resolution river network) connected to the dominant river interval. All 205 

secondary dominant rivers [Wu et al., 2011] within a coarse grid cell, if any, are treated as 206 

tributaries. The overland area of each grid cell is divided into two parts: (1) areas nearby the 207 

dominant river and directly contributing runoff to the dominant river through overland flow 208 

(dark blue arrows in Fig. 1d); (2) areas contributing to the dominant river through tributaries 209 

(light blue arrows in Fig. 1d). Within each grid cell, runoff generated on hillslopes is routed to its 210 

corresponding tributary through overland flow and then is treated as channel flow to enter the 211 

relevant dominant river interval. The overland flow and the tributary flow are treated as evenly 212 

distributed along the tributary and predominant river interval as lateral flow input, respectively. 213 

Once water enters the dominant river intervals, the river routing calculations follow the 214 

hierarchical dominant river ordering sequence in the major river network. Floodplain, reservoir 215 

and lake elements are not included in the current model. 216 

All the elements (hillslope, tributary and predominant river) (Fig. 1) are identified and 217 

parameterized by the DRT on a pixel-to-pixel basis tracing from the finer resolution river 218 

network (or flow path). In this study (model running at 1/8
th

 degree resolution), we set the 219 

number of “effective tributaries” of each grid cell to one, while parameterizing the effective 220 

tributary (including tributary length, slope, width etc.) using the value averaged from all 221 

tributaries within that grid cell as shown in Fig. 1b. The channel width is estimated by an 222 
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empirical relation to corresponding drainage area. The overland area within a grid cell directly 223 

contributing runoff to the corresponding dominant river is identified first using the DRT from 224 

high resolution flow direction map and the remaining area of the grid cell is assigned to the 225 

effective tributary. The DRT also uses the Strahler ordering system [Strahler, 1957] to define a 226 

hierarchical drainage network topology, e.g. for the upstream-downstream relationships and 227 

conjunctions connecting different river reaches. The model structure, based on the Strahler 228 

ordering system, is efficient for integrating numerical calculations established on each individual 229 

element for a better approximation of the characteristics of natural hierarchical runoff 230 

propagation.  231 

 232 

2.2.2 DRTR routing scheme governing equations and numeric solutions 233 

With the comprehensive parameterization provided by the DRT, the routing scheme can 234 

conveniently deploy different governing equations and numeric solutions to individual routing 235 

elements. In this study, we present a relatively simple method, i.e. applying the kinematic wave 236 

equations to both dominant rivers at grid level and tributaries at subgrid level, while assuming 237 

the overland surface runoff and baseflow enter the corresponding dominant river intervals and 238 

tributaries within each time step.  239 

Rectangular cross-section is assumed for all channels. Eq. (1)-(3) are the governing equations 240 

adopted for the kinematic wave method [Chow et al., 1988]: 241 

   Continutity equation        
Lq

x

Q

t

A










                          (1) 242 

   Momentum equation        0SS f                                      (2) 243 

   Manning equation            
3/5

3/2

2/1

0 A
nP

S
Q                           (3) 244 

where t  is the time [  , x  is the longitudinal flow distance [ ], A is the wetted area [m
2
] defined 245 

as the channel cross-section area below the water surface, and P is the wetted perimeter [m]. fS  246 

is the friction slope which incorporates the impacts of the gravity force, friction force, inertia 247 

force and other forces on the water. If the topography is steep enough, the gravity force 248 

dominates over the others, and fS  can be approximated by the channel bottom slope 0S , which 249 
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is the basic assumption for kinematic wave routing approaches [Chow et al., 1988]. In Eq. (3), n  250 

is Manning’s roughness coefficient, which is not directly measurable, but mainly controlled by 251 

surface roughness, type of bottom material and sinuosity of the flow path. In this study we 252 

applied a constant value of 0.03 globally for both predominant rivers and subgrid tributaries, 253 

although eventually it should be calibrated for local river basins. Q  is the streamflow and 254 

discharge [m
3
/s] and 

Lq is the lateral discharge in unit width [m
3
/s/m]. The backward differential 255 

scheme of the eq. (1) is  256 

L
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1                                           (4) 257 

where i and n are the spatial and temporal indexes, respectively. Rewriting the Manning 258 

equation, eq. (3),  )( 1

1

1

1







  n

i

n

i QA  and 
 )( 11

n

i

n

i QA   , substituting in eq. (4) we get  259 
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where 
6.0

0

3/2 )/( SnP and 6.0 . The right side of eq. (5) is known, and the newton-261 

iterative method is used to solve the unknown
1

1





n

iQ . The same numeric solution is also used for 262 

estimating channel water depth [mm] and thus for routed runoff (or land surface water storage, 263 

[mm]) calculations. 264 

2.2.3 The coupling of the DRTR routing model with the VIC model  265 

The vertical model processes of the VIC model run are calculated separately for each sub-266 

grid area before they are aggregated to a grid-scale output at the end of each model time step. 267 

The routing scheme was implemented within the VIC model framework taking the VIC 268 

estimated runoff as input for the routing calculation of discharge and routed runoff at each time 269 

step. The VIC model was modified to match the DRTR routing model structure with all grid cell 270 

calculations completed at each time step in the Strahler order-based sequence. The routing time 271 

step can be finer than the VIC model time step assuming that the runoff generation by the VIC 272 

model has an even temporal distribution within each VIC model time step.  273 

The DRTR routing scheme, implemented within the modified VIC model, can have 274 

bidirectional interactions with the VIC model. However, sub-grid floodplain delineation for 275 
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appropriate redistribution of routed runoff is needed to really take advantage of the two-way 276 

coupling strategy. Therefore, in this study the routing scheme was used as a post-processor for 277 

the runoff routing after each time step from the VIC model. That is, there is no two-way 278 

interaction between VIC and the DRTR in the following calculations. We plan to test and 279 

implement this potential improvement in a future study.  280 

 281 

3 Model setup and Data  282 

We performed the long-term TRMM era retrospective simulations by running the DRIVE 283 

combined model using the TMPA 3B42V7 research (which contains monthly rain gauge data, 284 

from 1998 to present) and TMPA 3B42V7RT real-time precipitation data (which uses only a 285 

climatological gauge correction, from 2000 to present), at 3-hourly temporal and 1/8
th

 degree 286 

spatial resolutions for the latitude band 50ºN-50ºS. Other forcing data (i.e. air temperature and 287 

wind speed) were taken from the NASA Modern-Era Retrospective analysis for Research and 288 

Applications (MERRA) reanalysis [Rienecker et al., 2011]. The phase (liquid vs. solid) of the 289 

precipitation is determined based on a simple partitioning scheme using air temperature within 290 

the VIC model [Hamlet et al., 2005]. For each grid cell at a time step, the satellite-based 291 

precipitation is assumed to be 100% snow when the air temperature is below -0.5°C, while it is 292 

100% rain when the temperature is above 0.5°C. A linear relationship is assumed between the 293 

two extremes. The quarter-degree resolution global soil and vegetation parameters (provided by 294 

Justin Sheffield, University of Princeton) were simply projected (pixel replication) to 1/8th 295 

degree resolution. This dataset included the recent updated parameters for the VIC model 296 

improved through calibration efforts [Troy et al., 2008]. The hydrographic parameters (e.g. flow 297 

direction, drainage area, flow length, channel width,  channel  slope,  overland  slope, flow 298 

fraction, river order) for the DRTR runoff-routing scheme were derived by applying the DRT to 299 

the HydroSHEDS [Lehner et al., 2008] global 1 km baseline hydrographic data [Wu et al., 2011, 300 

2012b]. Based on the DRT algorithms, all parameters for subgrid tributaries and flow paths are 301 

derived by tracing each fine-resolution (i.e. 1 km) grid cell. For example, overland slope and 302 

channel (tributary and predominant river) slopes for a grid cell are estimated as the average slope 303 

of all overland flow paths and channel flow paths, respectively, within the grid cell (more details 304 

in Li et al., 2013). Hereafter, TMPA 3B42V7 research and real-time precipitation products are 305 

referred to as TMPA RP and TMPA RT respectively, while the DRIVE model driven by TMPA 306 
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RP and TMPA RT is referred to as DRIVE-RP and DRIVE-RT respectively. A 3-year model 307 

spin-up run was performed (1998-2000) using the DRIVE-RP data to define the initial conditions 308 

for the both scenarios (DRIVE-RP and DRIVE-RT). All model results presented in this study are 309 

based on model parameters either estimated directly from input data (e.g. through DRT 310 

algorithms) or from the VIC community (e.g. soil and vegetation parameters). 311 

 312 

4. Model results and model performance evaluation 313 

In order to evaluate the new GFMS performance in flood event detection and streamflow 314 

magnitude estimation, particularly for evaluating the status of the GFMS in real-time flood 315 

estimation at the global scale, we performed the following: (1) evaluating examples of recent 316 

flood events as seen by the real-time GFMS, which has been running the DRIVE model routinely 317 

at 3-hourly temporal and 1/8 degree spatial resolutions over the globe using the real-time 318 

precipitation data; (2) evaluating the system model performance using 2,086 archived flood 319 

events by Dartmouth Flood Observatory (DFO, http://floodobservatory.colorado.edu), according 320 

to the evaluation method used by Wu et al. [2012a] and (3) validating against observed daily 321 

streamflow data from the 1,121 gauges selected from the Global Runoff Data Centre (GRDC, 322 

http://grdc.bafg.de/) database.  323 

4.1 Introduction of the major outputs of the DRIVE model and the real-time GFMS 324 

The DRIVE model can calculate a large number of hydrologic variables (e.g. soil moisture, 325 

evaportranspiration, snow water equivalent), but the main focus in this paper is the two outputs 326 

from the routing model related directly to floods: (1) streamflow (or discharge, m
3
/s); and (2) 327 

routed runoff (or surface water storage), which is the water depth [mm] at each grid cell on a dry 328 

ground basis, and statistical thresholds which were used for defining flood occurrence and 329 

intensity. According to Wu et al. [2012a], each grid cell is determined to be flooding at a time 330 

step when the routed runoff is greater than the flood threshold of that grid cell. In this study we 331 

calculated the flood threshold at each grid cell, based on the 11-year (2001-2011) DRIVE model 332 

retrospective simulation results, using the method from Wu et al. [2012a] with a slight 333 

modification, to make it relatively more reliable and easier to implement. Specifically, a grid cell 334 

is determined to be flooding when               and     , where   is the routed runoff 335 

[mm] of that grid cell at a time step;     and   are the 95th percentile value and the temporal 336 

http://floodobservatory.colorado.edu/
http://grdc.bafg.de/
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standard deviation of the routed runoff derived from the retrospective simulation time series at 337 

the grid cell; and   is the corresponding value of discharge [m
3
/s].  338 

By applying the flood threshold map to (subtracted from) the DRIVE model simulated routed 339 

runoff, the flood detection and intensity (i.e. the water depth above flood threshold, [mm]) is 340 

estimated for each grid cell of the globe at each time step. The real-time model results and 341 

precipitaton background information can be accessed at http://flood.umd.edu. Examples 342 

(screenshots) of the real-time GFMS major outputs (Routed runoff, streamflow, and flood 343 

detection/intensity) are shown in Fig. 2(a-c). An example of global TMPA 3B42 real-time 344 

rainfall input data (quarter degree) at a same time interval is also shown in Fig. 2d. For the flood 345 

detection/intensity parameter (depth above threshold), Fig. 2c(1-6) shows the evolution (at a 346 

daily interval) of the flood event in North India (north subbasins of Ganges River Basin) during 347 

Jun 15, 2013 to Jun 20, 2013. To interpret the flood detection and intensity results (Fig. 2c), 348 

areas with more than ~30 mm above the threshold (starting with blue) are ususally considered 349 

having significant flood, while other potential areas (i.e. green and light blue in Fig. 2c) with 350 

lower flood intensity indicate a possible developing flood. A wide-spread lower flood intensity 351 

usually occurs as a response to wide-spread rainfall events, often indicating a coming flood wave 352 

in downstream areas at a later time, which can serve as a warning signal. The North India floods 353 

were reported as killing more than 1,000 people. The GFMS generally captured the events but 354 

the accuracy was not validated because of  the lack of observed data in real time for this case.  355 

4.2 Recent floods in Mississippi upstream sub-basin rivers  356 

Upstream sub-basins of the Mississippi River in Iowa, Ilinois, Missouri, Indiana, Ohio, and  357 

Kentucky flooded during April to June of 2013 (Figs. 3 and 4), with the location indicated in Fig. 358 

2 as a red rectangle over the USA. The GFMS output successfully captured the occurrence of 359 

these events according to information from the Dartmouth Flood Observatory and the media (see 360 

flooding at Des Plaines, IL on April 19, 2013 in photograph in Fig. 4 ). Fig. 3a and 3b show the 361 

snapshots of the GFMS estimated flood detection and intensity parameter for the two major flood 362 

waves from Mississippi upstream tributary rivers originating in mid-April and early-June 2013, 363 

respectively. Both flood events were caused by wide-spread precipitation in this area as shown in 364 

Fig. 3c and 3d with previous 7-day accumulated precipitation prior to the flooding time (i.e. 365 

09Z18Apr2013 and 09Z02Jun2013, respectively). Meanwhile, the spatially distributed 366 

streamflow information is also shown in Fig. 3e and 3f. All such information and more details 367 

http://flood.umd.edu/
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are available from the GFMS website, e.g. animations for detailed (3-hourly time step) flood 368 

evolution within river basin drainage systems and time series data for any grid cell of interest. 369 

In order to quantitatively validate the real-time GFMS performance in simulating these flood 370 

events, we compared the real-time calculations with 29 USGS streamflow gauges from the 371 

USGS WaterWatch program (http://waterwatch.usgs.gov; filled circles in Fig 4a) within the 372 

flood affected area (along the Iowa, Cedar, Wabash, Ilinoise, Ohio, Misouri, and Mississipi 373 

Rivers). The upstream drainage areas of these gauges range from 2,884 to 1,772,548 km
2
. 374 

According to the metrics calculated based on the two-year retrospective period  (2011-06-12 to 375 

2013-06-12), there were 41% (12) out of 29 gauges showing positive daily Nash-Sutcliffe 376 

coefficient (NSC) [Nash and Sutcliffe, 1970] values with a mean of 0.23 as indicated as green 377 

points (rather than black) in Fig. 4a and 55% (16) of them showing positive monthly NSC values 378 

with a mean of 0.35. All these gauges showed fairly good correlation coefficients between 379 

observed and simulated streamflow with a mean of 0.55 and 0.70 at daily and monthly scale, 380 

respectively. Fig. 4 also shows the observed and simulated daily hydrographs for four of the 381 

gauges (locations indicated in Fig. 4a) during this Spring and early Summer flooding period 382 

(April 1 to Jun 9, 2013). These hydrographs explain the good performance of the GFMS in flood 383 

occurance detection (Section 4.3) as the system can generally capture the variation and 384 

magnitude of observed streamflow during the flooding season. There were biases in magnitude 385 

and shifts in timing as shown, but they have limited impacts on flood event detection. For these 386 

cases, the simulated floods tend to be faster than observed, which may be because the DRIVE 387 

model does not include floodplain and lake/reservoir processes. Hydrographic parameterization 388 

can also contribute to the timing error, e.g., overestimated channel width or underestimated 389 

surface roughness can also lead to faster flood waves. One can also see from Fig. 4 that in these 390 

cases the model consistently underestimated the snowmelt-related streamflow in early spring, 391 

which, however, is not typical for most years in our long-term retrospecitve simulation (not 392 

shown). 393 

Overall, without model calibration and considering the impacts from man-made structures 394 

and regulated flow (many small dams in this area, Fig. 4a), the DRIVE model using the real-time 395 

satellite precipitation input gives a reasonable real-time detection of flood occurance and 396 

magnitude estimation.  397 

 398 

http://waterwatch.usgs.gov/
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4. 3 Flood event inventory based evaluation  399 

Following the same methodology developed and used by Wu et al. [2012a], a similar 400 

evaluation of the new GFMS performance in flood event detection across the globe was 401 

conducted using the same reported flood event databases compiled mainly from news, reports 402 

and some satellite observations by the DFO. The flood event database used by Wu et al. [2012a] 403 

was extended through 2011 using the latest DFO database.  404 

Based on a 2 × 2 contingency table (a =GFMS yes, reported yes; b = GFMS yes, reported 405 

no; c =GFMS no, reported yes; d =GFMS no, reported no), three categorical verification metrics, 406 

including probability of detection [POD; a/(a + c)], false alarm ratio [FAR; b/(a+b)], and critical 407 

success index [CSI; a/(a + b + c)], were calculated using the 11-year (2001-2011)  retrospective 408 

simulations from both DRIVE-RP and DRIVE-RT, against the DFO flood inventary for the same 409 

time period.  410 

 411 

4. 3.1 Flood Threshold maps by DRIVE-RP and DRIVE-RT and the corresponding 412 

background precipitation estimation  413 

The flood threshold maps used for the Flood Detection/Intensity parameter are derived from 414 

the retrospective runs and the formulas given in a previous section. Both the DRIVE-RP and 415 

DRIVE-RT-based flood threshold maps have very similar spatial patterns and value ranges. The 416 

global flood threshold values by DRIVE-RP range from 0 to 14,349 mm with a mean of 17.7 417 

mm, while the DRIVE-RT derived shreshold values range from 0 to 16,268 mm with a mean of 418 

18.7 mm. Both  flood threshold maps correspond well to the river basin drainage networks, with 419 

large values for river grid cells having large upstream drainage areas. Fig. 5a shows the DRIVE-420 

RT-based flood threshold map, with the difference between the thresholds for DRIVE-RP and 421 

DRIVE-RT shown in Fig. 5b. Fig. 6a shows the mean annual precipitation distribution by TMPA 422 

RT from the same time period (2001-2011) and the difference map (Fig. 6b) in parallel to Fig. 5. 423 

There is a correlation coeficient of 0.98 between the two flood threshold maps, while the 424 

correlation coeficient of the two mean annual precipitation maps by TMPA RP and RT is also 425 

very high at 0.95. The global mean difference between the two flood threshold maps (DRIVE-426 

RT minus DRIVE-RP) is 1.0 mm (5.9%), while the mean difference in the mean annual 427 

precipitation is 49.1 mm (5.4 %). Visually comparing of Fig. 5b and Fig. 6b clearly shows that 428 

the variations in the flood threshold values in the DRIVE-RT (relative to DRIVE-RP) are 429 
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primarily controlled by the bias distribution in the precipitation. The DRIVE-RT flood thresholds 430 

usually show a consistent bias against those of DRIVE-RP, either low or high, within a basin or 431 

sub-basin (Fig. 5b). For example, from Fig. 5b and Fig. 6b, the DRIVE-RT flood threshold 432 

values and corresponding precipitaion are generally consistently higher than those of DRIVE-RP 433 

in the west-central U.S. (including the entire Missouri River basin and Colorado River basin).  In 434 

contrast, they are generally lower in the eastern areas of the Mississippi River, with the result 435 

that flood threshold values are higher than for DRIVE-RP in the downstream part of the 436 

Mississippi stem river (as seen from the inset window in Fig. 5b). A similar situation happens in 437 

the Amazon river basin, while consistent higher threshold values by DRIVE-RT than DRIVE-RP 438 

were found in almost all Asian and Austrailian river basins, except for Southeast Asia and 439 

coastal areas. The entire Congo River and almost the entire Danube River basin and Nile River 440 

basin show lower DRIVE-RT thresholds than DRIVE-RP. A zoomed-in area for Asia of Fig. 5b 441 

is also shown as background in Fig. 7.  442 

Fig. 6b also indicates the areas where improvements are needed for satellite-based real-time 443 

land precipitation estimation. The overestimation in the interiors of continents at higher latitudes 444 

may be related to false identification of surface effects as precipitation events in wintertime, 445 

while overestimation over the upper reaches of the Amazon may be related to overestimation of 446 

deep convective events. In coastal areas in middle latitudes the underestimation is most likely 447 

related to underestimation of shallow, orographic rainfall. Elimination of these precipitation 448 

biases will likely improve the flood statistics.   449 

4.3.2 Flood event detection metrics 450 

We used the same method developed by Wu et al. [2012a] to match the simulated and 451 

reported flood events for the evaluation. A brief introduction of the method is given below. For 452 

more details, one can refer to Wu et al. [2012a]. The DFO flood database provides the locations 453 

(latitudes/longitudes) and days of the reported floods. We assume the reported flood locations are 454 

located in the correct river basin, even though they may not be recorded with precisely correct 455 

latitude and longitude coordinates. A simulated flood event was defined within a local spatial 456 

window according to the reported location and a one-day (±24 hours) buffer surrounding the 457 

reported flood duration. The local spatial domain was defined, based on the DRT flow direction 458 

map, to be composed of all grid cells in the upstream drainage area within a limited flow distance 459 

(i.e. ~200 km) according to the reported location and the grid cells in the downstream stem river 460 
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of the basin/sub-basin below the reported location within a limited distance (i.e. ~100 km). When 461 

there are more than three grid cells flooding (according to the method in Section 4.1) within the 462 

spatial domain for two continuous three-hour time intervals, we mark the entire area defined by 463 

the spatial domain as simulated flooding. 464 

According to the flood event matching method discussed above, the DRIVE-RP and DRIVE-465 

RT detected 1,820 (87.2%) and 1,799 (86.2%) out of total DFO reported 2,086 flood events over 466 

the entire study domain during the 11-year time period, respectively. The DRIVE-RP only has a 467 

slightly better performance than DRIVE-RT in detecting reported greater-than-one-day flood 468 

events, but both of them have a much higher POD than that of the previous version of the GFMS 469 

(~60%) [Wu et al., 2012a]. The POD for flood events of greater than three-day duration is ~90%, 470 

as compared to ~80% for the previous system. 471 

 In order to evaluate the GFMS performance in terms of false alarms, 38 well-reported areas  472 

(shaded yellow in Fig. 7) are selected to further evaluate the flood detection performance POD, 473 

FAR and CSI, together. This approach is used to minimize the impact of unreported floods, 474 

especially in sparsely populated areas. Each of these well-reported areas, according to Wu et al. 475 

[2012a], is defined as a limited spatial window (based on reported flooding location) having at 476 

least six reported floods during the 11 years. Fig. 7 shows the distribution of these well-reported 477 

areas in South-East Asia for example, very similar to those identified using the reported flood 478 

inventory during a different time period (1998~2010) by Wu et al. [2012a]. Well-reported areas 479 

are also defined for the other continents. The metrics of POD, FAR and CSI vary across regions 480 

but with a generally consistent trend related to number of upstream dams. The dams (Fig. 7) are 481 

located according to the global large dam database [Vörösmarty et al., 1997; Vörösmarty et al., 482 

2003]. Fig. 8 shows the statistical results for each well-reported area for floods longer than three 483 

days according to the DFO data. There are a total of 304 floods in this validation set. Along the 484 

bottom of the plots in Fig. 8 are the number of dams (from a more comprehensive Global 485 

Reservoir and Dam (GRanD) database [Lehner et al., 2011]) in each area, increasing toward the 486 

right side of the diagrams. For example, both DRIVE-RP and DRIVE-RT results show that the 487 

FAR tends to increase along with the increasing of number of dams in the upstream areas (Fig. 8). 488 

This trend is also clearly shown in Fig. 7, in which FAR tends to be smaller where there are 489 

fewer or no large dams (dots) upstream of a well-reported area. The POD score tends to be 490 

higher in well dammed and well-reported areas, though the signal is not consistent as for FAR. 491 
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These findings are consistent with and explained in detail in Wu et al. [2012a]. Dams tend to 492 

result in more false alarms since the DRIVE model does not included dam/reservoir operation 493 

information at this time. 494 

 The comparison between DRIVE-RP and DRIVE-RT results show very close performance 495 

for most of the selected well-reported areas indicating very similar precipitation information (in 496 

terms of ocurrence and relative magnitude) in the upstream basins of these well-reported areas by 497 

TMPA RP and TMPA RT. Generally DRIVE-RP showed somewhat better performance than 498 

DRIVE-RT according to all metrics. DRIVE-RP provided an overall slightly better mean POD of 499 

0.93, FAR of 0.84 and CSI of 0.15 for all floods with duration greater than one day, compared to 500 

the DRIVE-RT with a mean POD of 0.90, FAR of 0.88 and CSI of 0.12 (Table 1). For floods 501 

with longer duration (i.e. ≥3 days), both DRIVE-RT and DRIVE-RP significantly decreased 502 

false alarms with a mean FAR of 0.73 and 0.65, resulting in higher CSI scores of 0.25 and 0.34 503 

respectively (Table 2). Both DRIVE-RP and DRIVE-RT showed much better flood detection 504 

performance than the previous version of GFMS, which showed a mean POD of 0.70, FAR of 505 

0.93 and CSI of 0.07 for floods with duration more than one day, and a mean POD of 0.78, FAR 506 

of 0.74 and CSI of 0.23 for floods with duration more than three days [Wu et al., 2012a]. From 507 

Tables 1 and 2, the false alarm rates are significantly lower in WRAs with fewer dams than those 508 

with more dams. For floods more than three days in the 18 WRAs with fewer than five dams, the 509 

DRIVE-RP also showed an overall better mean POD of 0.92, FAR of 0.56 and CSI of 0.43,  than 510 

the DRIVE-RT with a mean POD of 0.87, FAR of 0.66 and CSI of 0.32 (Table 2). The primary 511 

reason for improved detection results in the new system is surmised to be the improved runoff 512 

generation and routing with the DRIVE system, with a secondary factor possibly being improved 513 

precipitation estimation. 514 

4. 4 Gauge streamflow based validation 515 

Streamflow is arguably the best variable to be used to evaluate the overall performance of a 516 

hydrologic model because it represents the integrated results from all upstream water and energy 517 

processes and streamflow observations are much more available than other hydrologic variables 518 

(e.g. soil moisture, surface runoff) with relatively lower bias in observations. We evaluated the 519 

DRIVE model performance for streamflow simulation using observed streamflow data from 520 

1,121 global river gauges from the GRDC database. The gauges were selected with the criteria: 521 

(1) gauge data have at least a one-year length of daily time series during the validation period 522 
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2001- 2011; (2) the gauge can be well located in the DRT  upscaled  river  network, which serves 523 

as the geo-mask for organizing all model input and output data, so that the gauge observations 524 

can accurately represent the runoff-concentration from its upstream drainage area; (3) the gauge 525 

upstream drainage area >200 km
2
; (4) the gauges are not close to the study domain boundaries 526 

(latitude 50°N and 50°S), since these gauges cannot accurately represent their full upstream 527 

drainage basins. A program from the DRT algorithm package was used to geo-locate the original 528 

GRDC gauges in the model domain for evaluation. For each selected gauge, the difference in 529 

upstream drainage area of the gauge location between the DRT dataset and the GRDC dataset is 530 

less than 10%. The selected river gauges are widely distributed across the study domain and 531 

provide a good representation of the diverse hydroclimate regions, e.g. arid, semiarid, and humid 532 

regions (Fig. 9). However, east Africa, and south and west Asia (particularly the area between 533 

46°E - 97°E) are somewhat underrepresented for this evaluation. 534 

Both DRIVE-RP and DRIVE-RT results for the same retrospective time period from Jan. 535 

2001 to Dec. 2011 (132 months) were compared to observed daily streamflow data. Metrics 536 

including daily (Nd) and monthly (Nm) Nash-Sutcliffe coefficient (NSC) values, daily (Rd) and 537 

monthly (Rm) correlation coefficients, and Mean Annual Relative Error (MARE), all calculated 538 

based on the simulated and observed time series of streamflow (m
3
/s). 539 

       540 

4.4.1 Overall model performance in streamflow simulation over the globe 541 

Overall, when compared against the observed daily streamflow data from 1,121 GRDC 542 

gauges, the DRIVE-RP showed that 60% (675) of the gauges had positive monthly NSC with a 543 

mean of 0.39, and 29% (322) of gauges had monthly NSC greater than 0.4 with a mean of 0.57 544 

(Table 3). Meanwhile there were 38% (424) gauges having MARE within 30% with a mean of -545 

0.3%. Good correlation between the model-simulated and observed streamflow time series at 546 

monthly scale exists in almost all the gauges with a mean correlation of 0.67. Fig. 9 shows the 547 

spatial distribution of the monthly NSC for the DRIVE-RP streamflow simulation results. It is 548 

shown in Fig. 9 that the model has a generally consistent performance across different regions. 549 

Fig. 10 shows the histogram distribution of the number of gauges with positive monthly and 550 

daily NSC metrics for DRIVE-RP and DRIVE-RT, which clearly indicates that DRIVE-RP 551 

outperforms DRIVE-RT at the monthly scale, while the difference in the performance between 552 

the DRIVE-RP and DRIVE-RT is smaller at the daily scale.   553 
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Model performance decreased, as expected, at the daily scale, e.g. 46% of the gauges with 554 

positive monthly NSC had negative daily NSC. However, 58% (655) of gauges had correlation 555 

coefficients greater than 0.4 between the model-simulated and observed streamflow at the daily 556 

scale with a mean of 0.57. The correlation is more important for flood event detection, in which 557 

the percentile-based skill mainly depends on the relative order of routed runoff (or streamflow) 558 

magnitudes [Wu et al., 2012a]. The decrease of model skills at the daily scale is attributed to a 559 

combination of the precipitation input, model parameterization and the human impacts. The 560 

TMPA RP precipitation contains an adjustment using available rain gauge data at the monthly 561 

scale, which does not provide significant positive impact on the sub-monthly variability of 562 

precipitation because the sub-monthly depends on the sequence of short-interval precipitation 563 

events from the satellites. The model parameters (e.g. surface roughness) tend to lead to larger 564 

time lag bias at smaller time scales, e.g. a too fast flood wave simulation will have much more 565 

negative impact on daily evaluation metrics than on the monthly evaluation. Human impacts 566 

(particularly the effect of dam regulation) can significantly change the shape of the daily 567 

hydrograph of a natural river, while having less impact at seasonal scales. According to the 568 

global metrics (Table 3 and Fig. 9), the DRIVE model including only natural processes, driven 569 

by TMPA-RP precipitation and a priori parameter sets, shows an overall promising performance 570 

in reproducing streamflow for global rivers.  571 

The generally good performance of DRIVE-RP can also provide a measure for evaluating the 572 

potential of the real-time GFMS performance when using TMPA-RT precipitation input. From 573 

Table 3 the DRIVE-RT has a generally consistently lower skill than DRIVE-RP as expected, and 574 

with lower NSCs and correlation coefficients at both daily and monthly scales, while also having 575 

larger MARE. However, there were 215 gauges (19%) with positive daily NSC with mean of 576 

0.16 and 474 gauges (42%) having good correlations (> 0.4) between simulated and observed 577 

daily streamflow with a mean of 0.53. These types of variations in flood statistics that are a 578 

function of rainfall input indicate that improvement of the satellite precipitation information will 579 

lead directly to better flood determinations. 580 

 581 

4.4.2 Seasonal and regional model performance in streamflow simulation  582 
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In order to further evaluate the variations of model performance in streamflow simulation, 583 

the same metrics as presented in Section 4.4.1 are derived based on the model results and 584 

observed data for different regions and seasons (Table 3-5).    585 

Table 3 also shows the metrics calculated based on the full simulation time series (indicating 586 

the overall model performance) at several different latitude bands, i.e. deep tropics (10ºS to 587 

10ºN), sub-tropics (10ºN to 30ºN and 10ºS to 30ºS), mid-latitudes (30ºN to 50ºN and 30ºS to 588 

50ºS). To facilitate interpretation of the Table 3, for example, the percentage of gauges for which 589 

the DRIVE model showed positive daily NSCs is plotted for each latitude band, as seen in Fig. 590 

11, from which the DRIVE-RT showed clearly model skill decay from the deep tropics toward 591 

higher latitudes in both hemispheres, probably in response to the TMPA RT precipitation quality. 592 

Similar decays occurred for other metrics, e.g. for DRIVE-RT results there are 57% of stations 593 

with positive monthly NSC with mean Nm of 0.36 in the deep tropics, dropping to 51% of gauges 594 

with a mean Nm of 0.33 for northern sub-tropics and 25% gauges with a mean Nm of 0.21 for 595 

northern mid-latitudes (Table 3). The DRIVE-RP showed generally consistently better model 596 

performance over all these regions than the DRIVE-RT, and similar model skill decay toward 597 

higher latitudes can also be seen in the DRIVE-RP results in Table 3 and Fig. 11. Interestingly, 598 

this decay pattern was modified slightly (Fig. 11) by the monthly gauge-based correction in the 599 

TMPA RP which leads to relatively better monthly scale performance in higher latitudes where 600 

more rain gauge data are available. For the northern mid-latitudes there are 66% gauges having 601 

positive Nm with mean of 0.38 with DRIVE-RP, while for northern sub-tropics there were 54% 602 

(23 out of 43) gauges having positive Nm with mean of 0.41.  603 

The same metrics were also calculated for DRIVE-RP and DRIVE-RT results for these 604 

latitude bands but only based on summer (Table 4) and winter (Table 5) months respectively. 605 

The metrics calculated based on full time series, summer-only and winter-only months (Table 3, 606 

4 and 5) indicate the same consistent relative model performance across different regions and 607 

between DRIVE-RP and DRIVE-RT. Seasonal metrics (Table 4 and 5) also show generally 608 

consistently better model performance in deep tropics and sub-tropics than mid-latitudes. Table 4 609 

and 5 also show generally larger water balance bias (MARE), and relatively lower monthly 610 

correlation coefficients in streamflow between gauge observations and simulations in winter 611 

seasons than summer seasons, indicating a relative less quality of satellite based precipitation 612 

estimation for winter seasons. Although precipitation is not the only causation for the spatial 613 
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variation of model performance, precipitation is probably the primary one and its signature is 614 

clearly visible in the results. 615 

Fig. 12 shows an example of comparisons of model performance between DRIVE-RP and 616 

DRIVE-RT in South America (primarily in the Amazon River Basin with relatively fewer dams) 617 

according to daily NSC and MARE. One can see that the DRIVE model shows very similar 618 

statistical performance in terms of reproducing observed daily streamflow time series and annual 619 

water balance when driven by TMPA RP or RT data. For this region (Fig. 12) there were 76 620 

gauges, out of total 205, showing a positive daily NSC with mean of 0.25 by the DRIVE-RP, 621 

while the DRIVE-RT derived 63 gauges with positive NSC with a mean of 0.22. There were 101 622 

and 112 gauges with MARE<30% with mean of -2.3% and -5.4% by DRIVE-RP and DRIVE-623 

RT respectively. This indicated a generally good real-time GFMS performance (relative to 624 

DRIVE-RP) for many areas. Note that all the results were derived from the DRIVE model 625 

without any further calibration. Appropriate calibration is expected to improve the model 626 

performance for many rivers particularly for those gauges (among green and purple points in Fig. 627 

12c and 12d) with model-calculated negative NSCs and relative higher MARE, but being within 628 

a reasonable range of error (e.g. NSC>-1.0 and MARE within 50%). Of course, precipitation 629 

error reduction is probably even more important.  630 

4.4.3 Examples of simulated hydrographs against observations 631 

Two GRDC gauges (locations indicated as dark points in Fig. 6b) were selected as examples 632 

to show the simulated streamflow time series against observed hydrographs with monthly and 633 

daily intervals (Fig. 13). They were selected because they represent relatively natural river basins 634 

without dams and both DRIVE-RP and DRIVE-RT results show reasonable positive monthly 635 

and daily NSCs. The GRDC gauge 1577101 (8.38333N, 38.78333E) is on Awash River, 636 

Ethiopia, with a mean annual precipitation of 1,102 mm (according to TMPA RP observation 637 

from 1998 to 2012) for its upstream basin area of 7,656 km
2
 (presented by the DRT with 40 1/8

th
 638 

degree grid cells). The gauge 3664100 (25.77389S, 52.93287W) is on Rio Chopim River, Brazil 639 

with a mean annual precipitation of 2,102 mm for its upstream drainage area of 6,756 km
2
 (44 640 

grid cells). Fig. 13 shows that the simulated hydrographs generally agree well against the 641 

observed hydrographs at both daily and monthly scales. DRIVE-RT results show systematically 642 

lower streamflow estimation than DRIVE-RP over the time period (2001-2009) at the Ethiopian 643 

gauge. However, at the Brazilian gauge, the DRIVE-RT and DRIVE-RP show very close results, 644 
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while the DRIVE-RT estimated streamflow is overall slightly higher than that of DRIVE-RP. 645 

The streamflow biases (DRIVE-RT vs. DRIVE-RP) at both gauges are consistent with the 646 

precipitation bias (TMPA RT vs. RP, Fig 6b). 647 

The time delay (in days) was calculated, based on the daily values, to evaluate the errors 648 

related to the time lag between the simulated and observed hydrographs. The time delay was 649 

calculated as the time lag where the correlation coefficient between the daily simulated and 650 

observed time series is at a maximum [Paiva et al., 2013]. Positive (negative) time delay values 651 

indicate delayed (advanced) simulated hydrographs. A negative one day time delay was found at 652 

the two gauge locations for both DRIVE-RP and DRIVE-RT simulations, indicating the DRIVE 653 

model has faster flood wave simulations than observed at these two locations. Table 6 shows the 654 

model performances at the two gauges under different scenarios. A one-day delayed simulated 655 

hygrograph also resulted in significantly improved daily NSC metrics at the Brazilian gauge for 656 

both DRIVE-RP and DRIVE-RT. At this gauge, the original DRIVE-RT derived a daily NSC of 657 

0.17 for the time period of 2002-2005, while the one-day time-lag corrected simulated 658 

hydrograph has a daily NSC of 0.43. As expected, a one-day time lag has minor impacts on 659 

monthly and annual metrics at both gauges. The Ethiopian gauge statistics improve only slightly 660 

with the one-day time-lag adjustment indicating the timing error is smaller (at sub-daily level) at 661 

this gauge, or that there are other effects. Simulated hydrographs that are too fast were found in 662 

many other locations. This general bias in timing may be related to the fact that a floodplain 663 

module is not included in the current version of the DRIVE model and the calibration of channel 664 

geometrics-related parameters (particularly the Manning roughness and channel width 665 

parameters) is lacking. The constant Manning roughness value of 0.03 used in this study is 666 

probably too low for many river basins. A simple increase of the Manning roughness to 0.035 667 

resulted in significant improvements in DRIVE-RP for both gauges (Table 6). Fig. 14 shows the 668 

simulated and observed daily hydrographs (at gauge 3664100 [Brazil]) for a short time window 669 

as an example indicating the time delay error in the original DRIVE model simulation can be 670 

corrected through model calibration (here through a simple adjustment of the Manning roughness 671 

value).    672 

The two examples indicate that improved calibration and better model parameterization will 673 

improve both runoff generation and runoff-routing modelling and should be a focus for the future. 674 

The major magnitude difference usually happens in flood season, which may indicate a seasonal 675 



  23 

oriented calibration, in addition to a floodplain module, might be required for more accurate 676 

flood magnitude estimation. 677 

 678 

5. Discussion  679 

In this study, we use a deterministic model for the real-time flood monitoring. Uncertainties 680 

can lie in both the model itself and model inputs. Many factors such as quality of precipitation 681 

estimation, human activities (particularly through reservoir/dam regulation, irrigation withdraw 682 

etc.), and model structure and parameterization can significantly impact model performance. 683 

Specifically for this study, satellite-based precipitation used here has generally good quality in 684 

the tropics, but with relatively more quality issues in higher latitudes, cool seasons and complex 685 

terrain; the DRIVE model in its current version doesn’t include processes for man-made 686 

structures and human flow regulation, which exist extensively over the globe; even with only 687 

natural processes represented in the model, we have not performed any calibrations to tune the 688 

model toward reproducing better observations, though the model showed strong sensitivity to 689 

some parameters (e.g. Manning roughness). However, calibration of the hydrologic model can be 690 

problematic, if the observed discharge falls within the uncertainty of the simulated discharge 691 

[Biemans et al., 2009]. Calibration efforts in the future have to be implemented after an 692 

uncertainty analysis with particular attention paid to precipitation uncertainty for flood 693 

applications. Given a global domain in this study, the dominance of uncertainty sources will also 694 

be spatially dependent. Further work is needed to develop techniques or deploy existing ones 695 

from the literature [e.g. Beven and Freer, 2001; Renard et al., 2011; Demirel et al., 2013] for 696 

systematic uncertainty analysis. It is worth mentioning that the recent launch of the Global 697 

Precipitation Measurement (GPM) Core Observatory, a joint Earth-observing mission (as the 698 

follow-on of the TRMM mission) between NASA and the Japan Aerospace Exploration Agency 699 

(JAXA) [Hou et al., 2014], provides a good opportunity for further investigation of the 700 

uncertainties in our real-time flood modelling work. The DRIVE model is a participating 701 

hydrologic model in the GPM’s Ground Validation (GV) Program to investigate the effects of 702 

precipitation uncertainty on model results and the uncertainty propagation in hydrologic 703 

processes by deploying various existing precipitation products (both conventional and satellite-704 

based). We will report the results of that effort in a later paper. 705 
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Despite of the aforementioned uncertainties, we think the current model set-up and 706 

evaluation results provide a good basis for justification of the use of the GFMS for real-time 707 

flood monitoring, providing valuable information for flood analysis and for flood relief practice. 708 

Alfieri et al. [2013] recently performed a 21-year retrospective global hydrologic simulation 709 

driven by ERA-Interim reanalysis forcings at a 1/10
th

 degree resolution. Their evaluation against 710 

streamflow observations at 620 GRDC gauges showed there were 58% of these gauges with 711 

positive daily NSC. In this study, we use satellite precipitation, and run the hydrologic model at 712 

1/8
th

 degree resolution while evaluating the model performance using 1,121 GRDC gauges (with 713 

more gauges with smaller upstream areas and shorter data time length). In our model 714 

performance statistics, we did not remove the gauges with upstream reservoirs as done by Alfieri 715 

et al. The validation metrics of the two studies are comparable. We also assume the uncertainties 716 

involved would not change the spatial-temporal pattern of the validation metrics derived in this 717 

study. 718 

 719 

6. Summary and conclusions  720 

An experimental real-time Global Flood Monitoring System (GFMS) using satellite-based 721 

precipitation information has been running routinely for the last few years with evaluations of 722 

previous versions [Yilmaz et al., 2010; Wu et al., 2012a] showing positive results, but indicating 723 

areas for additional improvement.  In this paper we describe a new version of the system, present 724 

examples from the real-time system, and present an evaluation using a global flood event archive 725 

and streamflow observations. Real-time results from the system can be viewed at 726 

http://flood.umd.edu. For this new version of GFMS a widely used land surface model (LSM), 727 

the Variable Infiltration Capacity (VIC) model [Liang et al., 1994 and 1996] is coupled with a 728 

newly developed hierarchical dominant river tracing-based runoff-routing (DRTR) model to 729 

form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model 730 

system. The DRTR routing model is a physically based routing model running on a grid system 731 

with parameterization of each routing model element (at either grid level or subgrid level) based 732 

on high resolution (1 km) hydrographic inputs through robust hierarchical DRT [Wu et al., 2011 733 

and 2012b]. The VIC model was modified, for real-time flood simulation, from its original 734 

individual grid cell based running mode to match the DRTR routing model structure with all grid 735 

cell calculations completed at each time step.  736 

http://flood.umd.edu/
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Examples from the GFMS real-time system over the North India are used to describe the 737 

flood detection/intensity algorithm, time history of regional maps of this parameter and present 738 

example of streamflow calculations. The validation and analysis based on the recent flood events 739 

over the upper Mississippi valley from the GFMS real-time system demonstrated that the real-740 

time GFMS had a fairly good performance in flood occurrence detection, flood evolution and 741 

magnitude calculation according to observed daily streamflow data. 742 

Results of 15-year retrospective calculations with the DRIVE system using research (TMPA-743 

RP) and real-time (TMPA-RT) precipitation data sets indicate generally positive results. Global 744 

flood detection threshold maps based on the retrospective calculation of routed runoff at each 745 

grid location indicate a high level of correlation between the two rainfall data set inputs, with 746 

global and regional biases in the threshold related closely to differences in the mean rainfall. 747 

Using either rainfall data set the system detected about 87% of flood events of greater than one 748 

day duration across the globe. A further evaluation in 38 well-reported areas (to avoid under-749 

reporting), also gave a POD of 0.90, with a false alarm ratio (FAR) of about 0.85 for flood events 750 

with duration greater than one day, which decreases to 0.70 for longer duration floods (greater 751 

than three days). Consistent with the findings of Wu et al. [2012a] in an evaluation of the 752 

previous version of our system, dams tended to undermine model skill in flood detection by 753 

leading to more false alarms. According to the statistics for the 18 WRAs with fewer than five 754 

dams (i.e., the most natural basins in our global comparison), the flood detection system being 755 

driven by the real-time precipitation information had a POD of 0.87, FAR of 0.66 and CSI of 756 

0.32 for floods with duration longer than three days. Somewhat better statistics were achieved 757 

using the research quality precipitation information. In general, the new system provides 758 

improved statistics over the previous version of the GFMS when compared to the flood event 759 

inventory.  This improvement is related primarily to the improved routing model and the use of a 760 

well-tested LSM (VIC), but also to some improvement to the real-time rainfall information.   761 

The system was also tested against global streamflow observations from the Global Runoff 762 

Data Centre (GRDC). Using the research satellite precipitation information gave results of 763 

positive daily and monthly NSC values for 32% and 60% of the gauges with a mean of 0.22 and 764 

0.39, respectively, which is promising considering the model was using only a priori parameters. 765 

The real-time precipitation data produced similar results in a parallel comparison, showing no 766 

significant difference at daily scale except in the northern mid-latitudes, where the research 767 
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product produces better streamflow statistics than the real-time data, due to the positive influence 768 

of rain gauges in middle and higher latitudes. Validation using real-time precipitation across the 769 

tropics (30ºS–30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) 770 

stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. 771 

Better model performance was noted in deep tropics and sub-tropics as compared to mid-772 

latitudes at monthly and daily scales. Analysis of individual observed vs. simulated hydrographs 773 

indicated that the simulated flood wave generally leads the observations by one day in the mean 774 

for the two selected gauges, possibly related to the current channel hydraulic parameter 775 

configurations and lack of floodplain delineation. The model appears sensitive to the Manning 776 

roughness coefficients. A sensitivity test with an increased Manning coefficient significantly 777 

reduced the lag and increased the NSC. 778 

 Uncertainties in the model inputs, model structure and parameter sets, and evaluation data 779 

can introduce considerable uncertainties in the results of this study. We’ll investigate the 780 

uncertainty impacts on the flood estimation in future work, which is even more important in 781 

flood forecasting. However, both the flood event-based and the streamflow gauge-based 782 

evaluation indicated that even with the current quality of satellite-based precipitation, the model 783 

performance can likely be improved through hydrologic model development, particularly to 784 

include floodplain and reservoir/dam effects in the routing model (to decrease the false alarms) 785 

and better model parameterization and regional calibration. The model calibration strategy 786 

requires consideration of the uncertainty effects, particularly from the precipitation forcing. In 787 

addition to these directions, high-resolution (1 km) routing and water-storage calculations are 788 

being implemented for global real-time calculations, as well as combining the satellite 789 

precipitation information with precipitation forecasts from numerical weather prediction models 790 

to extend the real-time hydrological calculations into the future. 791 
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Figure captions 1010 

Figure 1. The DRTR routing model concept on river basin drainage system at (a) grid and (b)-(d) 1011 

subgrid scales using a real river basin (Mbemkuru river basin, Southeast of Tanzania) as example. 1012 

The light blue lines in (a) is the baseline high resolution (1km) river network from HydroSHEDS 1013 

and the red lines are the DRT-derived coarse-resolution rivers (1/8
th

 degree in this case). 1014 

 1015 

Figure 2. Example of the DRIVE model major outputs from the real-time GFMS with 1016 

screenshots from http://flood.umd.edu. The examples show the model global outputs of routed 1017 

runoff (a), streamflow (b), flood detection and intensity (water depth [mm] above flood threshold) 1018 

(c) at a 3-hour time interval (15Z01Jul2013). An example of global TMPA 3B42V7 real-time 1019 

rainfall input data at the same time interval is shown in (d). The example also shows the spatial-1020 

temporal evolution (at daily interval) of the flood event happened in North India during Jun 15, 1021 

2013 to Jun 20, 2013 (c1-6).  1022 

 1023 

Figure 3. Snapshots from the real-time GFMS (online: http://flood.umd.edu) for major two flood 1024 

waves, covering April to early Jun, 2013, in sub-basin rivers upstream of the Mississippi River, 1025 

including (a-b) the flood detection and intensity (water depth above flood threshold), (c-d) 1026 

http://dx.doi.org/10.1175/JHM-D-11-087.1
http://flood.umd.edu/
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previous 7-day accumulated precipitation according TMPA RT, (e-f) streamflow. All data are at 1027 

1/8
th

 (~12km) resolution.  1028 

 1029 

Figure 4. (a) The DRIVE-RT simulated streamflow against observed data from 29 USGS gauges 1030 

on the rivers of the upper Mississippi river basin for a two-year retrospective period (2011-06-12 1031 

to 2013-06-12). All USGS gauges are shown in filled circles, while their colors are turned into 1032 

green when the model-estimated positive daily NSCs at the corresponding locations. (b)-(e) 1033 

show the observed and simulated daily hydrographs for four of the gauges, with locations 1034 

indicated in (a), during the Spring and early Summer flooding period (April 1 to Jun 9, 2013). 1035 

 1036 

Figure 5. (a) Flood threshold map (according to routed runoff [mm]) based on 11-year (2001-1037 

2011) retrospective simulation by DRIVE-RT. (b) The difference between the flood threshold 1038 

maps derived by the DRIVE-RT and DRIVE-RP (DRIVE-RT - DRIVE-RP). 1039 

 1040 

Figure 6. (a) Mean annual precipitation map according to TMPA RT from 2001 to 2011; (b) the 1041 

difference between the mean annual precipitation for TMPA RP and RT over the same period.  1042 

 1043 

Figure 7. Example of well-reported areas (shaded yellow) and their corresponding FAR metrics 1044 

(according to DRIVE-RT for all floods with duration greater than 1 day) in the part of Asia that 1045 

tends to have more floods. The background image is the zoomed –in flood threshold difference 1046 

(DRIVE-RT - DRIVE-RP) from Fig. 5b.  1047 

 1048 

Figure 8. The flood detection metrics POD (a), FAR (b) and CSI (c) across 38 well-reported 1049 

areas for DRIVE-RP and DRIVE-RT results for all floods with duration greater than three days, 1050 

against DFO flood inventory data during 2001 to 2011. The numbers of dams upstream of each 1051 

well-reported area are listed along the X-axis.  1052 

 1053 

Figure 9.  DRIVE-RP model performance (monthly NSC) in reproducing monthly streamflow 1054 

during 2001-2011, when driven by TMPA RP research precipitation data, at 1,121 GRDC 1055 

streamflow gauges across the globe. All GRDC gauges are shown as filled circles, while at each 1056 

gauge if the model performance is of a positive value for monthly NSC, the gauge color turns 1057 

into green or purple in accordance to the value of NSC.  1058 

 1059 

Figure 10. Histogram distribution of the number of gauges with positive (a) monthly and (b) 1060 

daily NSC values for DRIVE-RP and DRIVE-RT simulation for 2001-2011. 1061 

 1062 

Figure 11. The percentage of gauges in each latitude band (defined in the Section 4.4.2) for 1063 

which the DRIVE model showed positive daily NSCs using TMPA RP and TMPA RT 1064 

precipitation input. The X-axis values are the central latitude for each band. 1065 

 1066 

Figure 12. The daily NSC (a) and (b), and MARE (c) and (d) metrics for the region of South 1067 

America from (a, c) DRIVE-RP and (b, d) DRIVE-RT model results.  1068 

 1069 

Figure 13. Examples of the simulated and observed hydrographs at two gauges. The gauge 1070 

locations are indicated as filled circles in Fig. 6b.  1071 

 1072 
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Figure 14. Example of hydrographs in a short time window (April 11, 2005 –December 31, 2005) 1073 

computed by the DRIVE-RP. The red curve stands for the original DRIVE-RP modelling with 1074 

Manning coefficient of 0.03 for both stem river and sub-grid tributaries; the black curve is from 1075 

DRIVE-RP using a Manning coefficient of 0.035, while the green curve is negative one day 1076 

corrected original DRIVE-RP simulated hydrograph.  1077 
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Figure 1. The DRTR routing model concept on river basin drainage system at (a) grid and (b)-(d) subgrid 

scales using a real river basin (Mbemkuru river basin, Southeast of Tanzania) as example. The light blue 

lines in (a) is the baseline high resolution (1km) river network from HydroSHEDS and the red lines are 

the DRT-derived coarse-resolution rivers (1/8th degree in this case). 

 

 

 



 

Figure 2. Example of the DRIVE model major outputs from the real-time GFMS with screenshots from 

http://flood.umd.edu. The examples show the model global outputs of routed runoff (a), streamflow (b), 

flood detection and intensity (water depth [mm] above flood threshold) (c) at a 3-hour time interval 

(15Z01Jul2013). An example of global TMPA 3B42V7 real-time rainfall input data at the same time 

interval is shown in (d). The example also shows the spatial-temporal evolution (at daily interval) of the 

flood event happened in North India during Jun 15, 2013 to Jun 20, 2013 (c1-6).  

 

http://flood.umd.edu/


 

Figure 3. Snapshots from the real-time GFMS (online: http://flood.umd.edu) for major two flood waves, 

covering April to early Jun, 2013, in sub-basin rivers upstream of the Mississippi River, including (a-b) 

the flood detection and intensity (water depth above flood threshold), (c-d) previous 7-day accumulated 

precipitation according TMPA V7RT, (e-f) streamflow. All data are at 1/8
th
 (~12km) resolution.  

 

 

 



 

Figure 4. (a) The DRIVE-RT simulated streamflow against observed data from 29 USGS gauges on the 

rivers of the upper Mississippi river basin for a two-year retrospective period (2011-06-12 to 2013-06-

12). All USGS gauges are shown in filled circles, while their colors are turned into green when the model-

estimated positive daily NSCs at the corresponding locations. (b)-(e) show the observed and simulated 

daily hydrographs for four of the gauges, with locations indicated in (a), during the Spring and early 

Summer flooding period (April 1 to Jun 9, 2013). 

 



Figure 5. (a) Flood threshold map (according to routed runoff [mm]) based on 11-year (2001-2011) 

retrospective simulation by DRIVE-RT. (b) The difference between the flood threshold maps derived by 

the DRIVE-RT and DRIVE-RP (DRIVE-RT - DRIVE-RP). 



 

Figure 6. (a) Mean annual precipitation map according to TMPA RT from 2001 to 2011; (b) the difference 

between the mean annual precipitation for TMPA RP and RT over the same period.  



 

Figure 7. Example of well-reported areas (shaded yellow) and their corresponding FAR metrics 

(according to DRIVE-RT for all floods with duration greater than 1 day) in the part of Asia that tends to 

have more floods. The background image is the zoomed –in flood threshold difference (DRIVE-RT - 

DRIVE-RP) from Fig. 5b.  

 



 

Figure 8. The flood detection metrics POD (a), FAR (b) and CSI (c) across 38 well-reported areas for 

DRIVE-RP and DRIVE-RT results for all floods with duration greater than three days, against DFO flood 

inventory data during 2001 to 2011. The numbers of dams upstream of each well-reported area are 

listed along the X-axis.  

 



 

Figure 9.  DRIVE-RP model performance (monthly NSC) in reproducing monthly streamflow during 2001-

2011, when driven by TMPA RP research precipitation data, at 1,121 GRDC streamflow gauges across 

the globe. All GRDC gauges are shown as filled circles, while at each gauge if the model performance is 

of a positive value for monthly NSC, the gauge color turns into green or purple in accordance to the 

value of NSC.  

 



 

Figure 10. Histogram distribution of the number of gauges with positive (a) monthly and (b) daily NSC 

values for DRIVE-RP and DRIVE-RT simulation for 2001-2011. 

 

 

 

 



 

Figure 11. The percentage of gauges in each latitude band (defined in the Section 4.4.2) for which the 

DRIVE model showed positive daily NSCs using TMPA RP and TMPA-RT precipitation input. The X-axis 

values are the central latitude for each band. 

 

 

 

 

 



 

Figure 12. The daily NSC (a) and (b), and MARE (c) and (d) metrics for the region of South America from 

(a, c) DRIVE-RP and (b, d) DRIVE-RT model results.  

 

 

 



 

Figure 13. Examples of the simulated and observed hydrographs at two gauges. The gauge locations are 

indicated as filled circles in Fig. 6b.  

 

 



 

Figure 14. Example of hydrographs in a short time window (April 11, 2005 –December 31, 2005) 

computed by the DRIVE-RP. The red curve stands for the original DRIVE-RP modelling with Manning 

coefficient of 0.03 for both stem river and sub-grid tributaries; the black curve is from DRIVE-RP using a 

Manning coefficient of 0.035, while the green curve is negative one day corrected original DRIVE-RP 

simulated hydrograph.  
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Table 1. Flood detection verification against the DFO flood database over the 38 well reported areas 
(WRAs) for floods with duration more than 1 day. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The same as Table 1, but for floods with duration more than 3 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metrics POD FAR CSI 

Metrics averaged over all the 38 WRAs  

DRIVE-RT 0.90 0.88 0.12 

DRIVE-RP 0.93 0.84 0.15 

Metrics averaged over the 20 WRAs with ≥ 5 dam 

DRIVE-RT 0.93 0.92 0.08 

DRIVE-RP 0.94 0.90 0.10 

Metrics averaged over the 18 WRAs with<5 dam  

DRIVE-RT 0.86 0.83 0.17 

DRIVE-RP 0.92 0.78 0.21 

Metrics POD FAR CSI 

Metrics averaged over all the 38 WRAs  

DRIVE-RT 0.90 0.73 0.25 

DRIVE-RP 0.93 0.65 0.34 

Metrics averaged over the 20 WRAs with ≥ 5 dam 

DRIVE-RT 0.93 0.80 0.19 

DRIVE-RP 0.94 0.73 0.26 

Metrics averaged over the 18 WRAs with<5 dam  

DRIVE-RT 0.87 0.66 0.32 

DRIVE-RP 0.92 0.56 0.43 



Table 3. The metrics for model performance in streamflow simulation, at daily and monthly time intervals 
for continuous years, against 1,121 GRDC river gauges across the globe (-50°S to 50°N). Metrics are listed 
for global and regional areas (from deep tropics to higher latitudes). The time period of daily streamflow 
gauge data ranges in 1~11 years. Nd and Nm stand for daily and monthly NSC respectively. Rd and Rm 
stand for daily and monthly correlation coefficients respectively. MARE is the mean annual relative error.  

 
Daily NSC Monthly NSC Correlation Coeff. 

MARE<30% 
Nd>0 Nd>0.4 Nm>0 Nm>0.4 Rd>0.4 Rm>0.4 

Global (-50°S to 50°N) with 1,121 gauges 

% of gauges 
RP 32 4 60 29 58 99 38 
RT 19 1 32 7 42 95 27 

Mean 

metrics 
RP 0.22 0.52 0.39 0.57 0.57 0.67 -0.3% 
RT 0.16 0.57 0.27 0.54 0.53 0.53 -2.9% 

-10°S~10°N with 141 gauges 

% of gauges 
RP 44 9 62 31 76 99 44 
RT 39 6 57 22 75 98 51 

Mean 

metrics 
RP 0.25 0.55 0.41 0.58 0.64 0.70 -6.8% 
RT 0.23 0.60 0.36 0.58 0.61 0.66 -5.5% 

10°N to 30°N with  43 gauges 

% of gauges 
RP 30 5 54 28 51 95 37 
RT 23 2 51 19 42 95 33 

Mean 

metrics 
RP 0.17 0.47 0.41 0.59 0.58 0.72 -0.3% 
RT 0.18 0.54 0.33 0.60 0.54 0.60 -0.6% 

30°N to 50°N with 671 gauges 

% of gauges 
RP 34 4 66 31 61 99 41 
RT 17 1 25 3 39 96 24 

Mean 

metrics 
RP 0.21 0.52 0.38 0.56 0.56 0.66 1.1% 
RT 0.13 0.53 0.21 0.50 0.51 0.45 -1.2% 

-10°S to -30°S with  191 gauges 

% of gauges 
RP 28 1 52 28 59 99 34 
RT 22 0 45 11 46 98 35 

Mean 

metrics 
RP 0.17 0.46 0.30 0.56 0.54 0.46 2.0% 
RT 0.11 - 0.29 0.50 0.52 0.56 -4.9% 

-30°S to -50°S with 75 gauges 

% of gauges 
RP 21 0 44 8 5 96 20 
RT 10 0 24 0 1 88 9 

Mean 

metrics 
RP 0.05 - 0.25 0.46 0.52 0.57 -9.2% 
RT 0.01 - 0.06 - 0.44 0.34 6% 

 

 

 

 

 

 



Table 4. The same as Table 3 but for summer seasons (i.e. JJA is used for deep tropic and Northern 
hemisphere while DJF is used for Southern hemisphere)  

 
Daily NSC Monthly NSC Correlation Coeff. 

MARE<30% 
Nd>0 Nd>0.4 Nm>0 Nm>0.4 Rd>0.4 Rm>0.4 

-10°S~10°N with 141 gauges 

% of gauges 
RP 14 5 31 11 51 84 33 
RT 14 4 18 8 55 86 31 

Mean 

metrics 
RP 0.32 0.68 0.32 0.59 0.65 0.64 -3.2% 
RT 0.26 0.48 0.31 0.53 0.61 0.61 -2.7% 

10°N to 30°N with  43 gauges 

% of gauges 
RP 19 0 28 14 37 86 23 
RT 16 2 35 12 26 84 14 

Mean 

metrics 
RP 0.10 - 0.31 0.54 0.56 0.65 0.1% 
RT 0.16 0.43 0.30 0.52 0.56 0.62 -1% 

30°N to 50°N with 671 gauges 

% of gauges 
RP 25 4 43 22 58 99 25 
RT 10 1 19 3 30 92 21 

Mean 

metrics 
RP 0.22 0.54 0.41 0.61 0.56 0.72 1.3% 
RT 0.16 0.53 0.25 0.57 0.52 0.48 -1.4% 

-10°S to -30°S with  191 gauges 

% of gauges 
RP 19 0 42 19 37 93 26.2 
RT 13 0 26 6 19 85 31 

Mean 

metrics 
RP 0.14 - 0.37 0.57 0.51 0.66 -3.5% 
RT 0.10 - 0.26 0.49 0.48 0.48 1.4% 

-30°S to -50°S with 75 gauges 

% of gauges 
RP 7 0 31 8 8 72 15 
RT 8 0 11 0 3 63 11 

Mean 

metrics 
RP 0.11 - 0.27 0.55 0.52 0.62 -3.7% 
RT 0.03 - 0.06 - 0.49 0.37 2.3% 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. The same as Table 3 but for winter seasons (i.e. DJF is used for deep tropic and Northern 
hemisphere while JJA is used for Southern hemisphere)  

 
Daily NSC Monthly NSC Correlation Coeff. 

MARE<30% 
Nd>0 Nd>0.4 Nm>0 Nm>0.4 Rd>0.4 Rm>0.4 

-10°S~10°N with 141 gauges 

% of gauges 
RP 17 3 36 14 43 87 34 
RT 15 4 26 11 23 89 37 

Mean 

metrics 
RP 0.23 0.55 0.34 0.57 0.61 0.62 -2.8% 
RT 0.24 0.55 0.31 0.53 0.60 0.47 -5.3% 

10°N to 30°N with  43 gauges 

% of gauges 
RP 9 0 28 9 28 75 30 
RT 14 0 26 2 21 63 28 

Mean 

metrics 
RP 0.01 - 0.25 0.51 0.56 0.62 1.2% 
RT 0.04 - 0.16 0.45 0.61 0.54 -2.3% 

30°N to 50°N with 671 gauges 

% of gauges 
RP 22 3 34 16 48 92 39 
RT 8 1 11 3 33 78 19 

Mean 

metrics 
RP 0.02 0.12 0.40 0.62 0.55 0.61 -6.2% 
RT 0.01 0.07 0.27 0.57 0.52 0.49 -5.5% 

-10°S to -30°S with  191 gauges 

% of gauges 
RP 7 1 10 4 28 66 15 
RT 5 1 7 3 15 56 14 

Mean 

metrics 
RP 0.02 0.1 0.31 0.64 0.60 0.57 3.0% 
RT 0.01 0.08 0.23 0.48 0.52 0.44 -1.6% 

-30°S to -50°S with 75 gauges 

% of gauges 
RP 15 0 42 19 9 85 23 
RT 15 0 21 1 8 76 11 

Mean 

metrics 
RP 0.09 - 0.30 0.51 0.45 0.65 -8.9% 
RT 0.09 - 0.22 0.44 0.47 0.44 -6.1% 

 

 

 

 

 

 

 

 

 

 

 



Table 6. DRIVE model streamflow simulation performance at two selected gauges. n  is the  Manning 
roughness coefficient, which was used uniformly globally for both the dominant rivers and tributaries. The 
metrics were also calculated by delaying the simulated streamflow time series by one day which resulted 
in the maximum correlation coefficient between simulated and observed hydrographs.   

 Nd Nm Rd MARE 

 

GRDC 1577101 

(2001-2009) 

DRIVE-RP  0.35 0.67 0.62 5.4% 

DRIVE-RP(-1day) 0.35 0.67 0.63 5.4% 

DRIVE-RP ( 035.0n ) 0.45 0.68 0.67 5.7% 

DRIVE-RT 0.29 0.40 0.60 -41% 

DRIVE-RT(-1day) 0.30 0.41 0.61 -41% 

 

GRDC 3664100 

(2002-2005) 

DRIVE-RP 0.28 0.65 0.55 0.5% 

DRIVE-RP(-1day) 0.48 0.65 0.69 0.5% 

DRIVE-RP ( 035.0n ) 0.55 0.64 0.75 0.6% 

DRIVE-RT 0.17 0.59 0.53 9.6% 

DRIVE-RT(-1day) 0.43 0.58 0.68 9.5% 
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